Двигатель внутреннего сгорания.
Двигатель внутреннего сгорания, тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу.
Первый, практически пригодный, газовый двигатель внутреннего сгорания был сконструирован французским механиком Э. Ленуаром в 1860 году. В 1876 году, немецкий изобретатель Н. Отто, построил более совершенный, 4-тактный газовый двигатель внутреннего сгорания. По сравнению с паромашинной установкой, двигатель внутреннего сгорания принципиально более прост, так как устранено одно звено энергетического преобразования — парокотельный агрегат. Это усовершенствование обусловило большую компактность двигателя внутреннего сгорания, меньшую массу на единицу мощности, более высокую экономичность, но для него потребовалось топливо лучшего качества (газ, нефть).
В 1880-х годах, О. С. Костович в России, построил первый бензиновый карбюраторный двигатель. В 1897 году, немецкий инженер Р. Дизель, работая над повышением эффективности двигателя внутреннего сгорания, предложил двигатель с воспламенением от сжатия. Усовершенствование этого двигателя внутреннего сгорания на заводе Л. Нобеля в Петербурге (ныне «Русский дизель») в 1898—99 годах, позволило применить в качестве топлива нефть. В результате этого двигатель внутреннего сгорания становится наиболее экономичным стационарным тепловым двигателем. В 1901 году, в США был разработан первый трактор с двигателем внутреннего сгорания. Дальнейшее развитие автомобильных двигателей внутреннего сгорания позволило братьям О. и У. Райт построить первый самолёт с двигателем внутреннего сгорания, начавшего свои полёты в 1903 году. В том же 1903 году, русские инженеры установили Двигатель внутреннего сгорания на судне «Вандал», создав первый теплоход. В 1924 году, по проекту Я. М. Гаккеля в Ленинграде был создан первый, удовлетворяющий практическим требованиям, поездной тепловоз.
По роду топлива двигатель внутреннего сгорания разделяются на двигатели жидкого топлива и газовые. По способу заполнения цилиндра свежим зарядом — на 4-тактные и 2-тактные. По способу приготовления горючей смеси из топлива и воздуха — на двигатели с внешним и внутренним смесеобразованием. К двигателям с внешним смесеобразованием относятся карбюраторные, в которых горючая смесь из жидкого топлива и воздуха образуется в карбюраторе, и газосмесительные, в которых горючая смесь из газа и воздуха образуется в смесителе. В двигатель внутреннего сгорания с внешним смесеобразованием зажигание рабочей смеси в цилиндре производится электрической искрой. В двигателях с внутренним смесеобразованием (дизелях) топливо самовоспламеняется при впрыскивании его в сжатый воздух, нагретый до высокой температуры.
Экономичность работы двигателя внутреннего сгорания характеризуется эффективным КПД, который представляет собой отношение полезной работы к количеству тепла, выделяемого при полном сгорании топлива, затраченного на получение этой работы. Максимальный эффективный КПД наиболее совершенных двигателей внутреннего сгорания около 44%.
Основным преимуществом двигателя внутреннего сгорания, так же как и других тепловых двигателей (например, реактивных двигателей), перед двигателями гидравлическими и электрическими является независимость от постоянных источников энергии (водных ресурсов, электростанций и т. п.), в связи с чем установки, оборудованные двигателем внутреннего сгорания, могут свободно перемещаться и располагаться в любом месте. Это обусловило широкое применение двигателей внутреннего сгорания на транспортных средствах (автомобилях, сельскохозяйственных и строительно-дорожных машинах, самоходной военной технике и т. п.).
Совершенствование двигателей внутреннего сгорания идёт по пути повышения их мощности, надёжности и долговечности, уменьшения массы и габаритов, создания новых конструкций (см., например, Ванкеля двигатель). Можно наметить также такие тенденции в развитии двигателей внутреннего сгорания, как постепенное замещение карбюраторных двигатель внутреннего сгорания дизелями на автомобильном транспорте, применение многотопливных двигателей, увеличение частоты вращения и др.
Карбюраторные двигатели внутреннего сгорания.
Рабочий цикл 4-тактного карбюраторного двигателя внутреннего сгорания совершается за 4 хода поршня (такта), т. е. за 2 оборота коленчатого вала. При 1-м такте — впуске поршень движется от верхней мёртвой точки (в. м. т.) к нижней мёртвой точке (н. м. т.). Впускной клапан при этом открыт и горючая смесь из карбюратора поступает в цилиндр. В течение 2-го такта — сжатия, когда поршень движется от н. м. т. кв. м. т., впускной и выпускной клапаны закрыты и смесь сжимается до давления 0,8—2 Мн/м2 (8—20 кгс/см2). Температура смеси в конце сжатия составляет 200—400°C. В конце сжатия смесь воспламеняется электрической искрой и происходит сгорание топлива. Сгорание имеет место при положении поршня, близком кв. м. т. В конце сгорания давление в цилиндре составляет 3—6 Мн/м2 (30—60 кгс/1см2), а температура 1600—2200°C. 3-й такт цикла — расширение называется рабочим ходом; в течение этого такта происходит преобразование тепла, полученного от сгорания топлива, в механическую работу. 4-й такт — выпуск происходит при движении поршня от н. м. т. к в. м. т. при открытом выпускном клапане. Отработавшие газы вытесняются поршнем.
Рабочий цикл 2-тактного карбюраторного двигателя внутреннего сгорания осуществляется за 2 хода поршня или за 1 оборот коленчатого вала. Процессы сжатия, сгорания и расширения практически аналогичны соответствующим процессам 4-тактного двигателя внутреннего сгорания. При прочих равных условиях 2-тактный двигатель должен быть в 2 раза более мощным, чем 4-тактный, так как рабочий ход в 2-тактном двигателе происходит в 2 раза чаще, однако на практике, мощность 2-тактного карбюраторного двигателя внутреннего сгорания часто не только не превышает мощность 4-тактного с тем же диаметром цилиндра и ходом поршня, но оказывается даже ниже. Это обусловлено тем, что значительная часть хода (20—35% ) поршень совершает при открытых окнах, когда давление в цилиндре
невелико и двигатель практически не производит работы; продувка цилиндра требует затрат мощности на сжатие воздуха в продувочном насосе; очистка пространства цилиндра от продуктов сгорания газов и наполнение его свежим зарядом значительно хуже, чем в 4-тактном двигателе внутреннего сгорания.
Рабочий цикл карбюраторного двигателя внутреннего сгорания может быть осуществлен при очень большой частоте вращения вала (3000—7000 об/мин). Двигатели гоночных автомобилей и мотоциклов могут развивать 15 000 об/мин и более. Нормальная горючая смесь состоит примерно из 15 частей воздуха (по массе) и 1 части паров бензина. Двигатель может работать на обеднённой смеси (18 : 1) или обогащенной смеси (12 : 1). Слишком богатая или слишком бедная смесь вызывает сильное уменьшение скорости сгорания и не может обеспечить нормального протекания процесса сгорания. Регулирование мощности карбюраторного двигателя внутреннего сгорания осуществляется изменением количества смеси, подаваемой в цилиндр (количественное регулирование). Большая частота вращения и выгодные соотношения топлива и воздуха в смеси обеспечивают получение большой мощности в единице объёма цилиндра карбюраторного двигателя, поэтому эти двигатели имеют сравнительно небольшие габариты и массу [ 1—4 кг/квт ( 0,75—3 кг/л. с.)]. Применение низких степеней сжатия обусловливает умеренные давления в конце сгорания, вследствие чего детали можно делать менее массивными, чем, например, в дизелях. При увеличении диаметра цилиндра карбюраторного двигателя внутреннего сгорания возрастает склонность двигателя к детонации, поэтому карбюраторные двигатели внутреннего сгорания не делают с большими диаметрами цилиндров (как правило, не более 150 мм). Примером карбюраторного двигателя внутреннего сгорания может служить двигатель ГАЗ-21 «Волга». Это 4-цилиндровый 4-тактный двигатель, развивающий мощность 55 квт (75 л. с.) при 4000 об/мин и степени сжатия 6,7. Удельный расход топлива на наиболее экономичном режиме составляет 290 г/квт.ч.
Наибольшая мощность 4-тактного карбюраторного двигателя внутреннего сгорания 600 квт (800 л. с.). Мотоциклетные карбюраторные 2-тактные и 4-тактные двигатели внутреннего сгорания имеют мощность от 3,5 до 45 квт (от 5 до 60 л. с.). Авиационные поршневые двигатели с непосредственным впрыском бензина и искровым зажиганием развивают до 1100 квт (1500 л. с.) и более.
Карбюраторные двигатели внутреннего сгорания представляют собой сложный агрегат, включающий ряд узлов и систем.
Остов двигателя — группа неподвижных деталей, являющихся базой для всех остальных механизмов и систем. К остову относятся блок-картер, головка (головки) цилиндров, крышки подшипников коленчатого вала, передняя и задняя крышки блок-картера, а также масляный поддон и ряд мелких деталей.
Механизм движения — группа движущихся деталей, воспринимающих давление газов в цилиндрах и преобразующих это давление в крутящий момент на коленчатом валу двигателя. Механизм движения включает в себя поршневую группу (поршни, шатуны, коленчатый вал и маховик).
Механизм газораспределения служит для своевременного впуска горючей смеси в цилиндры и выпуска отработавших газов. Эти функции выполняют кулачковый (распределительный) вал, приводимый в движение от коленчатого вала, а также толкатели, штанги и коромысла, открывающие клапаны. Клапаны закрываются клапанными пружинами.
Система смазки — система агрегатов и каналов, подводящих смазку к трущимся поверхностям. Масло, находящееся в масляном поддоне, подаётся насосом в фильтр грубой очистки и далее через главный масляный канал в блок-картере под давлением поступает к подшипникам коленчатого и кулачкового валов, к шестерням и деталям механизма газораспределения. Смазка цилиндров, толкателей и других деталей производится масляным туманом, образующимся при разбрызгивании масла, вытекающего из зазоров в подшипниках вращающихся деталей. Часть масла отводится по параллельным каналам в фильтр тонкой очистки, откуда сливается обратно в поддон.
Система охлаждения может быть жидкостной и воздушной. Жидкостная система состоит из рубашек цилиндров и головок, заполненных охлаждающей жидкостью (водой, антифризом и т. п.), насоса, радиатора, в котором жидкость охлаждается потоком воздуха, создаваемым вентилятором, и устройств, регулирующих температуру воды. Воздушное охлаждение осуществляется обдувом цилиндров и головок вентилятором или потоком воздуха (на мотоциклах).
Система питания осуществляет приготовление горючей смеси из топлива и воздуха в пропорции, соответствующей режиму работы, и в количестве, зависящем от мощности двигателя. Система состоит из топливного бака, топливоподкачивающего насоса, топливного фильтра, трубопроводов и карбюратора, являющегося основным узлом системы.
Система зажигания служит для образования в камере сгорания искры, воспламеняюшей рабочую смесь. В систему зажигания входят источники тока — генератор и аккумулятор, а также прерыватель, от которого зависит момент подачи искры. В систему включается распределитель тока высокого напряжения по соответствующим цилиндрам. В одном агрегате с прерывателем находятся конденсатор, улучшающий работу прерывателя, и катушка зажигания, с которой снимается высокое напряжение (12—20 кв). В то время, когда двигатели внутреннего сгорания не имели электрического зажигания, применялись запальные калоризаторы.
Система пуска состоит из электрического стартёра, шестерён передачи от стартёра к маховику, источника тока (аккумулятора) и элементов дистанционного управления. В функции системы входит вращение вала двигателя для пуска.
Система впуска и выпуска состоит из трубопроводов, воздушного фильтра на впуске и глушителя шума на выпуске.
Газовые двигатели внутреннего сгорания.
Газовые двигатель внутреннего сгорания работают большей частью па природном газе и газах, получаемых при производстве жидкого топлива. Кроме того, могут быть использованы: газ, генерируемый в результате неполного сгорания твёрдого топлива, металлургические газы, канализационные газы и пр. Применяются как 4-тактные, так и 2-тактные газовые двигатели внутреннего сгорания. По принципу смесеобразования и воспламенения газовые двигатели разделяются на:
- двигатель внутреннего сгорания с внешним смесеобразованием и искровым зажиганием, в которых рабочий процесс аналогичен процессу карбюраторного двигателя;
- двигатель внутреннего сгорания с внешним смесеобразованием и зажиганием струей жидкого топлива, воспламеняющегося от сжатия;
- двигатель внутреннего сгорания с внутренним смесеобразованием и искровым зажиганием.
Газовые двигатели, использующие природные газы, применяются на стационарных электростанциях, компрессорных газоперекачивающих установках и т. п. Сжиженные бутано-пропановые смеси используются для автомобильного транспорта (см. Газобаллонный автомобиль).
Литература: Двигатели внутреннего сгорания, т. 1—3, М.. 1957—62; Двигатели внутреннего сгорания, М., 1968. Д. Н. Вырубов, В. П. Алексеев.
Газобаллонный автомобиль.
Газобаллонный автомобиль, автомобиль, двигатель которого работает на горючих газах, содержащихся в сжатом или сжиженном состоянии в баллонах, смонтированных на шасси этого автомобиля. В сжатом состоянии содержатся газы природные, добываемые на газовых промыслах и получаемые попутно при добыче и переработке нефти; коксовые, являющиеся побочным продуктом переработки каменных углей. Для обеспечения необходимого запаса хода газобаллонного автомобиля, сжатые газы нагнетаются в баллоны до давления 20 Мн/м2 (200 кгс/см2).
Газы, содержащиеся в сжиженном состоянии, подразделяются на 2 группы:
1) пропано-бутановые и пропилено-бутиленовые, превращающиеся в жидкость при обычных температурах и сравнительно невысоком давлении; они содержатся в стальных баллонах, рассчитанных на давление 1,6 Мн/м2 (16 кгс/см2);
2) метановый газ, превращаемый в жидкость при атмосферном давлении и температуре - 161,3°С; для его хранения и перевозки требуются специальные изотермические баллоны, изготовленные из хладостойкого материала и рассчитанные на давление в 1 Мн/м2 (10 -кгс/см2).
Основными преимуществами газобаллонного автомобиля перед автомобилями, работающими на жидких топливах, являются: меньший износ деталей двигателя, больший срок службы масла, возможность увеличения мощности двигателя за счёт повышения степени сжатия, более высокая топливная экономичность, меньшая стоимость топлива, малая токсичность отработавших газов.
Эксплуатация газобаллонных автомобилей связана с необходимостью создания сети газонаполнительных станций, что задерживает развитие этого вида транспорта.
В СССР, первые конструкции газобаллонных автомобилей были созданы в начале 30-х годов. Промышленный выпуск газобаллонных автомобилей, работающих на сжатых газах, был начат в 1939 году, на сжиженных газах - в 1953 году. Газобаллонные автомобили подразделяются на универсальные (работающие как на газе, так и на бензине) и специальные, двигатели которых приспособлены для работы только на газе.
Газобаллонная установка автомобиля, работающего на сжатом газе, включает 5-8 баллонов, располагаемых обычно под полом грузовой платформы. Из баллонов газ проходит через подогреватель, магистральный вентиль и фильтр в двухступенчатый редуктор, где его давление снижается до значения, близкого к атмосферному. На выходе из редуктора установлено дозирующее устройство, обеспечивающее поступление необходимого количества газа к карбюратору-смесителю, в котором газ смешивается с воздухом. Далее газо-воздушная смесь направляется в цилиндры двигателя.
Газобаллонная установка автомобиля, работающего на сжиженном газе, включает баллон, который заполняется жидкостью на 90% его ёмкости (сверху остаётся паровая подушка, необходимая при тепловом расширении жидкости). При пуске холодного двигателя топливо поступает в газообразном состоянии из верхней части баллона. Прогретый двигатель работает на топливе, поступающем из нижней части баллона через магистральный вентиль в испаритель, где оно (за счёт тепла горячей воды в системе охлаждения двигателя) переходит из жидкого в газообразное состояние. Испарённое топливо проходит войлочный и сетчатый фильтры, двухступенчатый газовый редуктор и поступает в двухкамерный газовый смеситель, в котором смешивается в необходимой пропорции с воздухом. Газо-воздушная смесь засасывается в цилиндры двигателя и сгорает, как и в обычном двигателе.
Сжиженный метан используется обычно комплексно - в качестве источника холода для поддержания низкой температуры в кузове (при перевозке, например, скоропортящихся пищевых продуктов) и одновременно топлива для двигателя. Из изотермического баллона метан проходит через теплообменные батареи (в которых он испаряется и нагревается за счёт тепла окружающего воздуха) в автоматический переключатель и двухступенчатый редуктор к газовому смесителю, откуда и поступает в цилиндры двигателя.
Литература: Самоль Г. И., Гольдблат И. И., Газобаллонные автомобили, 3 изд., М., 1963.
Дизельный двигатель внутреннего сгорания.
Дизель - двигатель внутреннего сгорания (ДВС) с воспламенением от сжатия. Воспламенение в цилиндре дизельного двигателя внутреннего сгорания происходит при впрыске топлива в воздух, нагретый до высокой температуры в результате сжатия поршнем. Дизельный двигатель внутреннего сгорания назван по имени немецкого инженера Р. Дизеля, построившего в 1897 году первый двигатель с воспламенением от сжатия. Дизельный двигатель внутреннего сгорания работает на топливе, которое значительно дешевле бензина. Существуют также газовые двигатели, работающие по циклу дизельного ДВС (см. Газодизель).
Дизельные двигатели внутреннего сгорания относятся к наиболее экономичным тепловым двигателям. Удельный расход топлива лучших дизельных ДВС составляет около 190 г/(квт·ч) [140 г/(л. с.·ч)], а для большинства типов дизельных ДВС не превышает 270 г/(квт·ч) [200 г/(л. с.·ч)] на номинальной мощности. Такие расходы топлива соответствуют КПД 31-44% (КПД карбюраторных ДВС обычно 25-30%).
Частота вращения вала дизельного двигателя внутреннего сгорания) обычно 100-3000 об/мин и лишь в отдельных случаях достигает 4000-4500 об/мин. Увеличение частоты вращения дизельного ДВС ограничивается временем, необходимым для смесеобразования и сгорания топлива. В дизельном двигателе внутреннего сгорания не возникает детонации, поэтому диаметры цилиндров практически не ограничены и в судовых дизельных ДВС достигают 1 м; мощность в одном агрегате превышает 30000 квт (40 000 л. с.). Удельная масса на единицу мощности у дизельного двигателя внутреннего сгорания от 3 до 80 кг/квт (от 2 до 60 кг/л. с.). Срок службы дизельного ДВС-от 5 до 80 тыс. ч.
Дизельные двигатели внутреннего сгорания различают по конструкции камер сгорания.
В дизеле с неразделённой камерой в процессе смесеобразования топливо равномерно распределяется по камере сгорания за счёт большого числа струй.
В вихрекамерных дизельных двигателях внутреннего сгорания поток воздуха закручивается при вытеснении его в вихревую камеру в процессе сжатия, а топливо впрыскивается в быстро вращающийся вихрь.
В предкамерных дизельных ДВС смесеобразование осуществляется вследствие поступления воздуха и топлива из предкамеры в основную камеру, вызванного начавшимся сгоранием и повышением давления в предкамере.
Для конструкции «камера в поршне» характерно плёночное смесеобразование, когда топливо подаётся на стенку камеры, а его пары захватываются вихрем воздуха и хорошо перемешиваются.
Конструкции дизельных двигателей внутреннего сгорания многообразны. Так, в СССР на маневровых тепловозах и судах применяют V-образные 12-цилиндровые дизельные двигатели внутреннего сгорания с водяным охлаждением и газотурбинным наддувом. В качестве основных тепловозных двигателей используются вертикальные рядные 2-тактные дизельные двигатели внутреннего сгорания с прямоточной продувкой. Наибольших размеров достигают судовые тихоходные дизельные двигатели внутреннего сгорания: например, 2-тактный рядный с клапанно-щелевой продувкой фирмы «Бурмейстер ог Вайн» (Дания) имеет диаметр цилиндра 840 мм, ход поршня 1800 мм, массу 885 т, высоту 12,1 м. Судовые дизельные ДВС часто делают крейцкопфного типа. Дизельные двигатели внутреннего сгорания иногда выполняют без коленчатых валов. Реже применяют W-образные и Х-образные дизельные двигатели внутреннего сгорания, т. е. вместо 2 блоков цилиндров, как у V-образного, эти дизельные ДВС имеют 3 или 4 блока, а также дизели звёздообразные с расположением цилиндров лучами и даже многозвёздные (блоки звёзд) до 42 цилиндров и более.
Область применения дизельных двигателей внутреннего сгорания обширна. Наибольшие объёмы применения приходятся на тракторостроение, ежегодно возрастает применение дизельных ДВС в автомобилестроении. В СССР около 50% локомотивов железнодорожного транспорта составляют тепловозы, т. е. локомотивы с дизельным двигателем внутреннего сгорания, в США большинство локомотивов — тепловозы. В речном флоте теплоходы с дизельным ДВС и дизельэлектроходы практически вытеснили пароходы. Дизельным двигателем внутреннего сгорания оборудуют самоходную военную технику (танки и ракетные установки). Широко применяют дизельные ДВС в качестве передвижных и стационарных энергетических установок в районах, удалённых от линий электропередач. Совершенствование дизельного двигателя внутреннего сгорания осуществляется путём повышения удельной мощности, частоты вращения, надёжности и долговечности, расширения ассортимента применяемых топлив (многотопливные двигатели).
Литература: Дизели. Справочник, под ред. В. А. Ваншейдта, М. — Л., 1964; Устройство и работа поршневых и комбинированных двигателей, 2 изд., М., 1970; Ricardo Н. R., The heigh-speed internal-combustion engine, L., 1955. Дизель (двигатель внутреннего сгорания) Н. Вырубов, В. П. Алексеев.
Газодизель.
Переоборудовать на газовое топливо (не важно, метан или пропан) можно не только бензиновый, но и дизельный двигатель как грузовой, так и легковой автомашины. Но для этого надо серьезно переделать штатную систему питания дизеля. Об этом и пойдет речь.
Прежде всего, нужно отметить, что на одном газе дизельный двигатель работать не может. Газ не может загораться от сжатия, как солярка, поскольку температура его самовоспламенения намного выше (около 700oС против 320-380oC у дизтоплива). Так что если попробовать заставить обычный дизельный двигатель работать на метане, температуры сжатого воздуха в цилиндрах просто не хватит для его самовоспламенения. Поэтому "чисто газовый" дизель даже теоретически невозможен. Тем не менее, существуют два способа приспособить дизельный двигатель к работе на газе.
Первый способ - радикальный, требует существенной переделки мотора (что в Европе практикуется достаточно давно). Для этого на дизельном двигателе демонтируют топливную аппаратуру, вместо нее устанавливают систему зажигания, а форсунки заменяют свечами зажигания. Машина комплектуется соответствующим газобаллонным оборудованием, и газ подается при помощи дозатора во впускной коллектор. Но так как октановое число у метана 120, то степень сжатия, присущая дизелю, для него будет слишком высока. Двигатель, переделанный таким образом, проработает очень недолго и разрушится от детонации. Чтобы обеспечить мотору нормальный режим работы, нужно уменьшить степень сжатия до 12-14 путем выборки "лишнего" металла на днищах поршней или в камерах сгорания головки блока. Если же этого окажется недостаточно, придется установить прокладки определенной толщины под головку блока цилиндров. Правда, в результате подобных переделок получится уже не дизель, а так называемый "газовый" двигатель. Он ничем (кроме повышенного ресурса) не будет отличаться от "поджатого" под газ до такой же степени сжатия (12-14) бензинового мотора.
После подобной переделки бывший дизель станет намного экологичнее и экономичнее, а ресурс его возрастет. Но в таком исполнении двигатель сможет работать только на природном газе, а сеть газовых заправок у нас, особенно в удалении от Риги, пока не настолько развита, чтобы можно было эксплуатировать автомобиль, особо не беспокоясь о том, хватит ли газа до следующей заправочной станции. Перспектива же остаться без топлива мало кого порадует. Ведь с канистрой за газом не сбегаешь...
Второй способ и более простой вариант, который уже давно используется, хотя и распространен не очень широко. Речь идет о приспособлении обычного дизеля для работы на смеси солярки и метана (так называемый газодизельный двигатель). В этом случае для работы дизеля на газе необходима подача в цилиндры некоторого количества солярки - так называемой запальной порции. Подаваемая в конце такта сжатия, она будет воспламеняться и поджигать газо-воздушную смесь, поступающую в цилиндры на такте впуска.
Запальная порция для газифицированных быстроходных дизелей (таковыми считаются все автомобильные) составляет 15-30% от обычной порции солярки (в зависимости от ГБО, типа двигателя и его состояния). Это, то минимальное количество, которое, самовоспламенившись, гарантированно подожжет в цилиндрах газовоздушную смесь. Преимущество такого мотора заключается в том, что, когда газ заканчивается, он может работать в своем обычном режиме - на дизтопливе. При работе в таком режиме, когда 70-85% топлива составляет природный газ, у дизеля полностью исчезает свойственный ему черный дым. Правда, в выхлопе несколько увеличивается содержание углеводородов - СН. Но это уже не канцерогены, выбрасываемые дизельным двигателем (тот же 3,4-бензопирен), а лишь незначительное количество не сгоревшего, совершенно безвредного метана. Кроме того, у газодизеля, по сравнению с обычным дизельным двигателем, возрастают ресурс (из-за уменьшения отложений на деталях цилиндро-поршневой группы) и срок службы масла.
Для переделки мотора требуется не только установка газобаллонного оборудования, но и определенная доводка имеющейся топливной аппаратуры. Прежде всего это касается насоса высокого давления, который должен обеспечивать стабильную подачу небольших порций дизтоплива на всех режимах работы двигателя. Приспособить, таким образом, для работы на газе можно любой дизельный мотор.
Грузовики с газодизельными двигателями когда-то производились в СССР серийно. Так, с 1987 г. Камский автозавод выпускал модели "53208", "53217", "53218" и "53219" с атмосферными двигателями КамАЗ-7409.10. А параллельно велись работы по доводке турбодизеля КамАЗ-7403 для работы на бинарном топливе. Однако с распадом СССР работы в этом направлении были прекращены.
Сегодня сдерживающим фактором перевода дизельных двигателей на сжатый природный газ прежде всего является отсутствие экономической заинтересованности автовладельцев. По расчетам специалистов, чтобы заинтересовать потребителей использовать сжатый и сжиженный газ, между ценами на них должно поддерживаться определенное соотношение. Так, цена пропан-бутана не должна превышать половину стоимости дизтоплива и бензина 95Е, а метан должен быть вдвое дешевле. А ведь кроме расходов на два вида горючего в период эксплуатации и немалой цены газовой аппаратуры, в себестоимость "газификации" входит и внесение изменений в штатную систему питания дизеля. Поэтому переводить на газовое питание дизельные легковушки с их в принципе относительно малым "аппетитом" вряд ли целесообразно, так как срок окупаемости дополнительного оборудования растянется на 6-7 лет при годовом пробеге 15 тыс. км. С экономической точки зрения, ГБО наиболее выгодно устанавливать на большегрузные дизельные автомобили с большим суточным пробегом, где оно окупается гораздо быстрее.
В то же время тяжелые грузовики используются в качестве специализированных автомобилей, прежде всего самосвалов и тягачей, а также для установки различной спецтехники. На таких машинах свободного места для размещения большого количества баллонов обычно нет, а несколько штук погоды не сделают. Что же касается средних и легких дизельных грузовиков и фургонов, то экономическая целесообразность установки на них ГБО оправдана только при большом годовом пробеге (порядка 45-50 тыс. км). Хотя с ростом цен на дизтопливо это становится все более актуальным.
Источник: журнал "Рига автомобильная" №162. Борис МИХАЙЛОВ.
Двигатель Ванкеля.
Двигатель Ванкеля - роторно-поршневой двигатель внутреннего сгорания (ДВС), конструкция которого разработана в 1957 году, инженером Ф. Ванкелем (F. Wankel, ФРГ). Особенность двигателя - применение вращающегося ротора (поршня), размещенного внутри цилиндра, поверхность которого выполнена по эпитрохоиде. Установленный на валу ротор жестко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестерней. Ротор с зубчатым колесом как бы обкатывается вокруг шестерни. Его грани при этом скользят по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре. Такая конструкция позволяет осуществить 4-тактный цикл без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого ДВС.
Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: r: R = 2: 3 (рис., б), которые устанавливают на автомобилях, лодках и т.п. Масса и габариты Ванкеля двигатель в 2—3 раза меньше соответствующих им по мощности ДВС обычной схемы. Серийный выпуск двигателей осуществляется в ФРГ, Японии, США.
В. В. Кулешов.
Многотопливный двигатель внутреннего сгорания.
Многотопливный двигатель, двигатель внутреннего сгорания, предназначенный для работы на различных нефтяных топливах, начиная от бензина и кончая дизельным топливом. Первые многотопливные двигатели появились в 30-х гг. 20 в. в Германии. Они строились на базе карбюраторных двигателей, но имели раздельную подачу воздуха и топлива. Воздух поступал в цилиндры под действием разрежения, а топливо впрыскивалось насосом с давлением около 5 Мн/м2 (50 кгс/см2). Пуск двигателя осуществлялся на бензине при помощи карбюратора, выключавшегося при нормальной работе. Смесь воспламенялась электрической системой зажигания. В 40-е гг. получили развитие многотопливный двигатель, построенные на базе автомобильных дизельных двигателей. Топливо в них подавалось насосом под давлением около 21 Мн/м2 (210 кгс/см2). При переходе с одного топлива на другое при помощи насоса подачи топлива устанавливался одинаковый расход топлива по массе, тем самым сохранялась та же мощность двигателя.
Применение многотопливных двигателей на автомобилях и тракторах значительно расширяет их топливную базу. По сравнению с карбюраторными двигателями многотопливные двигатели обладают лучшей топливной экономичностью, но уступают дизелям. К недостаткам многотопливных двигателей относятся сложность конструкции и необходимость тщательного наблюдения за работой системы топливоподачи. Многотопливные двигатели получили широкое распространение за рубежом, особенно в ФРГ.
А. А. Сабинин.